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AFIT-OR-MS-ENS-10-03 

Abstract 

The purpose of this research is to develop a method to find an optimal UAV cyclic 

schedule to provide maximum coverage over a target area to support an ISR mission. The 

goal is to reach continuous coverage. UAV continuous coverage of a target area is crucial 

for the success of an ISR mission. Even the smallest coverage gap may jeopardize the 

success of the mission. Ideally it is desirable to obtain continuous coverage of a target 

area but the stochastic nature of the problem makes continuous coverage without gaps 

unlikely. However, it is still possible to obtain a high coverage rate. Coverage gaps may 

occur at handoff from one UAV to another. We first study a deterministic model with 

identical UAVs and obtain the minimum number of required UAVs to ensure continuous 

coverage. Continuous coverage is possible only in the deterministic setting. The model 

provides valuable insights on the parameters driving the UAV performance coverage. We 

show that the loitering and the roundtrip times are the most impacting parameters driving 

the performance coverage of the UAVs. We prove that the number of UAVs is an 

increasing function of the roundtrip time and a decreasing function of the loitering time. 

We show that a minimum cyclic scheduling emerges in a natural way when the fleet 

consists of identical UAVs. The results obtained for the model with identical UAVs are 

then extended to the deterministic model with possibly non-identical UAVs. Again 

because it is a deterministic model, continuous coverage can be achieved. Conditions for 

continuous coverage are obtained and used to formulate the scheduling problem as an 

integer linear programming model. Special cases of the deterministic model are also 
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studied and conditions ensuring continuous coverage are given. Similar results for the 

stochastic model are obtained. The stochastic model can be formulated as a stochastic 

programming model with probabilistic constraints. Also, special cases are studied where 

the UAV attributes have specific probability distributions. Results obtained can be 

applied to other surveillance problems and particularly those pertinent to NRO and NSA. 
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THE UAV CONTINUOUS COVERAGE  

PROBLEM 

 

Chapter 1 

I. INTRODUCTION 

1.1 Setting 

In the past two decades, conventional warfare has shifted towards to asymmetric warfare 

as witnessed in the Iraqi war. Conventional warfare often proves to be ineffective in such 

situations and new effective strategies to fight vigorously the enemy in these new 

environments and realities is a necessity. In particular, developing and acquiring an 

asymmetric warfare capability is regarded as an important tool for the armed forces to 

fight effectively. In the asymmetric warfare framework, adversaries tend to use basic and 

rudimentary but nevertheless effective methods that conventional warfare technology 

does not know how to counter. It is inadequate and ineffective to fight with conventional 

weapons an enemy that uses tactics such as camouflage, improvised explosive devices, 

suicide bombings, hiding among the civilian population, hiding in rugged terrains hard to 

access and so on. As a result, there is a definite need for some innovative means to help 

the war-fighter fight asymmetrically and, not surprisingly, it is here that the Unmanned 

Aerial Vehicle (UAV) comes in handy.  

The Unmanned Aerial Vehicle idea, motivation, and development have a long history but, 

for our purpose, it suffices to say that its accelerated development and deployment were 

motivated by the recent need to be an effective player in the asymmetric warfare arena. 
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The USAF and the US Department of Defense, over the past two decades, have been 

using UAVs successfully to fight back by aggressively using them to track and attack the 

enemy. It turned out, as attested by various reports pertinent to the Iraq, Bosnia, Kosovo 

and Afghanistan wars that the UAV has proved itself to be an effective and lethal tool to 

combat the enemy. It is no surprise that the US Department of Defense made the UAV an 

integral part of the military capabilities and has dedicated substantial funds to support its 

development and integration into National Defense (1:37, 2:26). Various branches of the 

military use the UAV as an ISR tool in seeking supremacy over the adversary. Homeland 

Security also uses UAVs as a valuable tool to control illegal immigration and fight drug 

trafficking. 

Using UAVs to continuously watch the enemy and acting at the right time pays off. 

Recently, in Iraq, the UAV was used to track the leader of Al-Queda and ultimately 

eliminate him. The effective tracking was the result of carefully watching his 

whereabouts for 600 hours continuously (3). The continuous surveillance and coverage 

by the UAVs was the key for the success of the operation. Indeed, were it not for the 

UAV continuous coverage of the target, the enemy could have easily escaped during a 

UAV coverage gap (i.e., surveillance interruption) thus rendering the whole tracking 

operation a failure. It is therefore easy to understand why UAV continuous coverage is so 

critical for the success of crucial ISR missions.  

This research is about UAV continuous coverage and surveillance optimization. More 

specifically, it is about optimally scheduling UAVs cyclically to carry out a critical ISR 

mission that requires continuous coverage of the target area. The motivation is to provide 
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surveillance without interruption because the purpose of the mission depends on it. The 

ultimate goal is to provide a continuous flow of information and data to support the war-

fighter on the ground, to enhance the global efforts on fighting terrorism, and to improve 

the asymmetric warfare capabilities of the armed forces.  

 

1.2 Problem Statement 

A critical ISR mission requiring continuous surveillance and coverage of a target area is 

to be accomplished using UAVs as the main resource. A UAV fleet is available at the 

operating base to support the mission. Because the UAV is a valuable and scare resource 

it has to be used parsimoniously particularly when there are other ISR missions to be 

conducted at other sites around the world as it is often the case. The manager responsible 

for the mission needs to assemble a team of UAVs to carry out the mission. The main 

questions that need to be answered are how to sequence the UAVs to conduct the mission 

to provide continuous coverage of the target area and how many UAVs are needed 

knowing that one should not use more UAVs than needed. In short the manager is faced 

with a scheduling optimization problem where he seeks to find the best UAV cyclic 

schedule to provide coverage without interruption of the mission because the success of 

the mission depends on it. The manager needs help to answer his questions in a general 

setting and is particularly interested in developing a mathematical model to derive 

structural results and insights to guide his decision making process and it is not so much 

interested in simulation at this point. The manager stresses that continuous coverage is a 

key requirement. Ideally, if possible, he would like to see no coverage gaps at all since 
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that may render the mission worthless; for example, objects of interest may move out of 

the target area without him being aware of it. The manager realizes that there could be 

several unforeseen events that could prevent continuous coverage and if it is the case then 

he wants to obtain the maximum coverage possible. 

The manager’s problem which is simply stated as the UAV continuous coverage problem 

is the main focus of this thesis. More specifically, the purpose of this thesis is to develop 

a UAV continuous coverage scheduling optimization model to help the manager figure 

out how to come up with an optimal UAV cyclic schedule that provides continuous 

coverage of the target.  

 

1.3 Objective 

The goal of this research is to establish a mathematical modeling foundation for the UAV 

scheduling and coverage problems. A mathematical baseline structure is needed so that 

further research will build on it to tackle more complex UAV scheduling and coverage 

problems. This research is a first step toward achieving that. It does not lean much on 

previous work since the basic ideas and approach are new. The UAV continuous 

coverage problem is indeed complex. Here we simplify the problem so that the 

understanding and insights we gain from the basic version of the problem can be 

extended to more complex versions. The main tasks to be competed are: 

1. Develop an adequate mathematical framework for the UAV continuous coverage 

problem by starting with a very basic version of the problem. 
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2. Develop a deterministic model for a homogenous fleet of UAVs and derive 

necessary and sufficient conditions for the optimality of cyclic schedule. 

3. Develop a deterministic model for non-homogenous fleet of UAVs and derive a 

method that finds an optimal cyclic schedule. 

4. Derive a stochastic programming approach to find an optimal cyclic scheduling 

when some of the UAV basic data is stochastic. 

 

1.4 Scope 

This research is the first of its kind. To the best of our knowledge, the mathematical 

model developed in this thesis is introduced here for the first time. The continuous 

coverage model developed in this work can be applied to other situations where a task is 

to be processed continuously without interruptions and the “agents” providing the 

resources to perform the task are scheduled cyclically. Each agent carries out a portion of 

the task before handing it over to the next one. Here the agent is limited in its capability 

to work for a long time without interruption because it needs resources to sustain itself 

while working and so needs to break away from the task while another agent takes over. 

Therefore, an important characteristic of the task to be executed (processed) is that only 

one agent can work on the task at a time. In other words, because of the nature of the task 

at hand, the agents are not allowed to work concurrently. Search and rescue missions 

where continuous coverage may be crucial to find survivors, aerial tankers needing to 

orbit while waiting to refuel aircraft, satellite orbiting to provide a continuous flow of 

information may be modeled using the results of this thesis. We anticipate that the 
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present work may serve as a baseline for further work in UAV scheduling and continuous 

coverage. 

 

1.5 Overview 

Chapter 2 presents the mathematical setting and the basic definitions needed for modeling 

the UAV continuous coverage problem and then proceeds to study a simple version of the 

problem. The first model referred to as the basic model studies the UAV continuous 

coverage problem where the operational UAV fleet is homogenous in the sense that all 

the UAVs are identical. The main ideas, insights, and approach from this basic model 

will be the foundation for studying more complex versions of the basic model. In fact, 

this approach of first studying a simple version of a scheduling problem and then 

extending the insights to more complex problems has been used quite often in scheduling 

theory. The main results we derive for the basic model are necessary and sufficient 

conditions that characterize the optimal cyclic schedule. Also, we derive monotonicity 

properties to show how the optimal number of UAVs depends on the UAV attributes. 

Next, in Chapter 3, we extend the results of Chapter 2 to the case of a non-homogenous 

fleet of operational UAVs where the UAVs are not necessarily identical with respect to 

their attributes. Here the model is a more complex combinatorial optimization problem 

which we formulate as a binary integer linear programming. This problem is 

computationally NP hard and therefore does not have an efficient algorithmic solution 

when the size of the UAV fleet is very large (4:13, 34). However, for small size problems 

traditional techniques such as branch and bound methods can be used for numerical 
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applications. With the intent of solving large scale UAV coverage models we introduce 

the notion of a minimal cyclic schedule. The concept of a minimal cyclic schedule can be 

used in a Tabu search procedure for example because non-minimal cyclic schedules are 

not optimal and therefore can be excluded from the search. Since the problem is NP hard, 

heuristics can be used to find good solutions for large scale models. Finally the model is 

extended to the case where some UAV attributes are stochastic. Here the problem is 

formulated as a stochastic program because an imperfect handoff may occur with a 

positive probability. The models have also been extended to account for an admissible 

coverage gap of some length deemed not to affect the mission objective. 
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Chapter 2 

II. THE MODEL FOR A HOMOGENEOUS UAV FLEET 

 

2.1 Introduction 

The UAV continuous coverage model introduced in this thesis is new and does not lean 

much on previous research because no modeling work has been done on UAV continuous 

coverage in the same spirit it is done here. There is a vast amount of research done on 

UAVs but very little is directly related to the present work. Related UAV studies have 

appeared in the area of UAV decision and control (5), UAV swarms (6, 7, 8), and UAV 

simulation (9) but these studies do not have any direct impact on the continuous coverage 

problem approach as it is conceived here. However, for a general background the 

references that the reader will find very useful are Fahlstrom and Gleason (10), Howard 

(11), Renehan (12), Longino (13), Kennedy (14) and Stephenson (15). Other US 

Government documents and reports which are helpful for a basic understanding of UAVs 

are (1, 2, 16, 17). 

A UAV system consists of several components such as the ground control station, launch 

and recovery, payload, data links etc. However, we simply focus on the air vehicle part 

which we refer to as the UAV. Hence for the purpose of the study the UAV is just a 

flying object. One very important aspect of the UAV though is its flight trajectory which 

plays a major role in the search for the best cyclic schedule. In an ISR mission a UAV 

will be commuting between the operating base and the target area to support the mission. 

Moving the UAV back and forth between the operating base and the target area may be 
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regarded as a supporting activity whereas loitering is the core task (activity). Generally 

then the performance of the UAV will be based on how much support is provided to the 

core task. For the same loitering time the less support provided the better. An idea of 

productivity based of the ratio of support to core expenses will be reflected in the result 

that we derive.  

 
Figure 1.  The UAV Flight Trajectory 

Although the trajectory of the UAV during an ISR mission can be complex (see Figure 1) 

we simplify it to a few phases. The UAV starts from a mission ready state at the 

operating base, flies to the target area, loiters for a pre-specified length of time, then 

hands over the mission to the next scheduled UAV and heads back to the operating base. 

The UAV periodically goes back to the target area to provide coverage. Because the 

UAV has a limited endurance time, it cannot loiter indefinitely over the target area and 

thus needs to break away from the orbiting task. A UAV ending its loitering tour returns 

to the operating base for refueling, inspection, and maintenance. In fact, refueling is the 

major reason the UAV returns to the operating base. We assume all along that the 

mission length is longer than a UAV endurance time so that more than one UAV are 
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needed to provide continuous coverage since obviously one UAV alone cannot provide 

continuous coverage. Therefore, several UAVs need to work collaboratively as a team to 

successfully accomplish a critical ISR mission requiring continuous coverage by relaying 

each other cyclically.   

The goal is to build the best UAV cyclic schedule to provide continuous coverage of a 

target area. A UAV cyclic schedule consists of a finite number of UAVs scheduled 

sequentially (serially) to provide continuous coverage. In a cyclic schedule, each UAV 

provides coverage periodically. The objective is to provide coverage without 

interruptions with a minimum number of UAVs or equivalently to find the optimal cyclic 

schedule that provides coverage with no gaps of the target area. The concept of cyclic 

scheduling (18, 19, 20, 21, 22) has been used in a production environment but the UAV 

continuous coverage problem cannot be cast within those standard frameworks of 

scheduling theory because the present objective may not have a meaningful interpretation 

in a production environment.    

In this chapter we study a deterministic UAV continuous coverage model with identical 

UAVs. The model is referred to as the basic model.  

 

2.2 Preliminaries and Basic Definitions 

The following definitions will be used throughout this thesis. A few of them will be made 

mathematically more precise as the work progresses. Formally, a target area (area of 

responsibility) is the area where the UAV conducts a surveillance mission. A UAV 

roundtrip is the time it takes the UAV to fly from the operating base to the target area and 
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back. This includes the time spent in maintenance, refueling and inspection. The 

endurance of a UAV is the maximum duration the UAV can sustain itself flying. It 

depends on several factors such the amount of fuel it carries, the weight of the payload, 

weather conditions, enemy hostility, etc. A coverage gap (interruption) occurs when the 

target area is left unwatched for some time however short that may be. Levels of 

coverage gaps and their severities may also be defined when the analysis calls for it. The 

coverage of a target area is said to be continuous or uninterrupted if no coverage gap 

(interruption) occurs during the mission. A UAV is said to be operationally (mission) 

ready at time  if at time  it can take over the surveillance mission from another UAV 

and start loitering over the target area at time . A perfect handoff occurs when a UAV 

hands over the mission to the next UAV with no coverage gap. An imperfect handoff 

occurs when there is a coverage gap at the time of handoff. We say that a UAV takes 

over the mission successfully from the active and departing UAV if no coverage gap is 

induced at handoff. The loitering (loiter) time is the time the UAV spends orbiting over 

the target area collecting intelligence data. A UAV schedule is feasible if it does not 

cause coverage gaps during the mission. The slack time of a UAV is the time between the 

time UAV is mission ready to the time it is deployed to the target area.  

To each UAV, we assign two attributes. The first one is the roundtrip time and the 

second one the loitering time. Let the fleet with  UAVs be represented by a finite 

set  where  is the 

attribute vector of UAVi. The time  is the roundtrip time and  the loitering time of 

UAVi. The roundtrip time  is the aggregation of three components. It is the sum of 
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three variables ,  and  where  is the trip duration from the operating base to 

the target area,  the trip duration from the target area to the operating base, and  the 

duration spent in maintenance and repair at the operating base. 

Definition 2.2.1  Let the precedence symbol “→” be the “mission handoff” symbol 

where we write  to mean that UAVi hands over the mission to UAVj. 

Definition 2.2.2  Let the precedence symbol “ ” be the “successful mission handoff” 

symbol where we write  to mean that UAVi hands over the mission to UAVj 

successfully.  

Definition 2.2.3  The ordered sequence of UAVs  with 

 is said to cyclic schedule if : 

(a)  

(b)  

A schedule is said to be of size  if it uses  UAVs. Figure 2 shows a graphical 

representation of a cyclic schedule with  UAVs as a circuit with  nodes with one for 

each UAV. 
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Figure 2.  Cyclic Schedule with 6 UAVs 

Each oriented arc symbolizes a mission handoff from one UAV to the next. The way this 

schedule of size 6 works is straightforward. First UAV1 flies to the target area to loiter for 

a duration equal to  and heads back to the operating base. UAV2, which is supposed to 

be at the target area when UAV1 is about to be done, takes over the mission and begin its 

loitering task which lasts . Then the same happen between UAV2 and UAV3 etc. When 

UAV6 finishes its share of loitering it hands over the mission to the very first UAV1 and a 

scheduling cycle has been accomplished. The next cycle is similar to the previous one. 

Note that a UAV is used only once during a scheduling cycle and there is only one 

loitering UAV over the target area. A cyclic schedule gives each UAV a certain “rest” 

time away from the target area. This rest period consists mainly in refueling and 

undergoing the necessary maintenance and inspection to get the UAV in “top shape” 

again for its next loitering tour. 
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2.3 The Basic Model 

The UAV model with a homogeneous fleet of identical UAVs is referred to as the basic 

model. In this basic model, the roundtrip and loitering times of the UAVs are all equal to 

(  and the UAV fleet can be written as  with . 

Note that we are dropping the subscript when writing the attributes of a UAV. Define the 

following variables , , and  as being respectively the loitering altitude over the 

target area, the distance between the operating base and the target area, the loitering time, 

and the roundtrip time of the UAV. Recall that . 

 
Figure 3.  UAV Flight Trajectory Components 

Figure 3 shows the main elements of the basic model. It shows the flight trajectory of the 

UAV flying up to the target area and back. The roundtrip and loitering times (  and  

respectively) of a UAV clearly depend on the distance  and loitering altitude .  

To illustrate the main idea of when a cyclic schedules may generate coverage gaps we 

consider two specific cyclic schedules where the first one does not generate coverage 

gaps whereas the second one does. Basically is is about comparing the roundtrip time of a 

UAV to the aggregated loitering times of the other UAVs of the cyclic schedule.  

T
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h

d
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Base
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ξ1

ξ2

ξ3



15 

Let us start with a cyclic schedule that does not induce coverage gaps. As mentioned 

earlier such a schedule should consists of at least two UAVs. More specifically, consider 

a cyclic schedule consisting of two identical UAVs with the following parameters: 

  hours, 

  hours, 

  hours, and  

  hours. 

Figure 4 shows these two UAVs working together in such a perfect unison that they do 

not cause coverage gaps. 

 
Figure 4.  Two-UAV Cyclic Schedule with no Coverage Gap 
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The reason that this size 2 cyclic schedule is free of coverage gaps is as follows. At time 

 UAV1 starts its loitering tour over the target area and at time  finishes its loitering 

tour and needs to leave the target area. In the first cycle, it is clear that UAV2 can take 

over the mission successfully. At time  a perfect handoff occurs smoothly from UAV1 

to UAV2. We assume that the handoff process is perfect and takes a negligible length of 

time. That is, as UAV1 moves out of the target area UAV2 moves in. Next, at time  

UAV2 finishes its loitering task and needs to leave the target area. At that time UAV1 can 

take over the mission successfully from the UAV2 because the roundtrip time of UAV1 is 

the same as the loitering time of UAV2 which means that while UAV2 loiters over the 

target area UAV1 is capable of flying to the operating base and back to the target area. As 

a result, a perfect handoff from UAV2 to UAV1 takes place. Clearly in order to avoid a 

coverage gap the roundtrip time of UAV1 needs to be smaller than the loitering time of 

UAV2 and similarly the roundtrip time of UAV2 needs to be smaller than the loitering 

time of UAV1. But UAV1 and UAV2 being identical have the same loitering and 

roundtrip times and therefore to avoid coverage gaps we must have: 

 

Let us consider another cyclic schedule scenario with a farther target area having the 

following parameters: 

  hours, 

  hours, 

 hours, and  

  hours. 
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Figure 5.  Two-UAV Cyclic Schedule with a Coverage Gap 

Figure 5 shows how the schedule dynamically unfolds. It is clear that . 

As a result, a coverage gap is generated by this cyclic schedule. Figure 5 can help 

understand why such a schedule causes a coverage gap. By the time UAV2 finishes its 

loitering tour UAV1 has not been able to reach to target area because of the length of its 

roundtrip time  and, as a result, a coverage gap occurs during the switch from UAV2 to 

UAV1. Thus, to avoid coverage gaps one additional UAV at least is needed. Let us add 

one more UAV to have a schedule with three identical UAVs and the same performance 

parameters as earlier. This time in order to show how this new size 3 cyclic schedule 
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100%

0% gap
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44

UAV1

Loiter

Fly ξ1

Base ξ3 ξ3

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44

UAV2

Loiter

Fly ξ2

Base ξ3

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44

ξ1 ξ1ξ2 ξ2

T

UAV1 UAV2 UAV1 UAV2

gap

ξ1 ξ2 ξ1

T T

T



18 

unfolds we use a Gantt chart because it is more effective and easy to read. Figure 6 

depicts the cyclic schedule with 3 UAVs as a Gantt chart. 

 
Figure 6.  Three-UAVs Cyclic Schedule with no Coverage Gap 

By time  all three UAVs have loitered once. At time  when UAV3 is done with its 

loitering task we check whether one of UAV1 or UAV2 is able to take over the mission 

without causing a coverage gap. Clearly UAV2 cannot assure that since time  falls 

into its shaded area which represents its unavailability time (roundtrip time) period; 

however, UAV1 is available at time . Consequently, in order for UAV1 to be able to 

take over the mission successfully from UAV3 it must that its roundtrip time should not 

last longer than the aggregated loitering times of UAV2 and UAV3. This means that 

UAV1 should be able to return to the target area before UAV2 and UAV3 are done with 

their loitering tasks. Thus to obtain continuous coverage we must have: 

 

Since the three UAVs are identical this inequality holds for all of them. Next, consider a 

new target area which is farther from the operating base than the previous one and with 

the following parameters: 

 

Loiter /////////////////////////////////////////////////////////////////////// Loiter ///////////////////////////////////////////////////////////
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  hours, 

  hours, 

 hours, and  

  hours. 

Here, the previous inequality which led to continuous coverage does not hold anymore 

because  is smaller than  and so this schedule will cause 

coverage gaps. Therefore, at least one additional UAV is needed for this schedule to have 

the potential to provide continuous coverage.  

We have analyzed a few specific cyclic scheduling scenarios to find out the reasons a 

schedule may or may not provide continuous coverage. An idea that plays a major role is 

whether or not a departing UAV from the target area can be back to the area before the 

other UAVs of the cyclic schedule have each done their share of loitering. The results of 

this section are based on that idea.  

 

2.4 Results 

The first main result for the model with identical UAVs is a necessary and sufficient 

condition that characterizes the optimal cyclic schedule. The result provides a formula for 

the minimum number of identical UAVs required to support a mission with continuous 

coverage. Two more monotonicity properties show how coverage depends on the 

roundtrip and loitering times. More specifically, if  is kept constant and  

increases (decreases) then the minimum number of UAVs needed for continuous 
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coverage increases (decreases). Also, as the loitering time  increases (decreases) the 

minimum number of UAVs decreases (increases).  

 

2.4.1 Main Result 

Theorem 2.4.1  Let the positive integer  be such that 

 

Then, a schedule with  UAVs ensures a continuous coverage. However, a schedule 

with  or less UAVs causes a coverage gap during the mission. 

Proof.  We need at least 2 UAVs to obtain continuous coverage, and thus . We 

proceed to prove the assertion of the theorem by induction. First, we show the result for 

. Assume that 

                                                          

where, we recall that . We show that with exactly  UAVs the 

mission can be accomplished with no coverage gap. The following chart shows a cyclic 

schedule with  identical UAVs. 

UAV1: |▬▬▬▬▬▬|//////////////|-------|▬▬▬▬▬▬|//////////////|-------------------> time 
     0              T       T+∆    2T            3T       3T+∆ 

UAV2: |------------------|▬▬▬▬▬▬|//////////////|------|▬▬▬▬▬▬|/////////////|--> time 
     0              T               2T     2T+∆   3T            4T 

Figure 7.  Cyclic Schedule with 2 UAVs 

Note that the scheduling cycles are , , . UAV1 loiters from time zero 

until time  whereas UAV2 does it from time  to . At time  when UAV2 is 
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done with its ISR tour, UAV1 can take over the surveillance with no coverage gap if and 

only if UAV1 is available at time . But UAV1 is available the earliest at time . 

Thus UAV2 can take over the mission successfully if and only if  

 

or, equivalently 

 

which is exactly condition . Next, let UAV1 take over the mission at time  

and loiter from time  to . Now we check whether UAV2 can take over the mission 

successfully from UAV1. The answer is affirmative because the inequality  

is equivalent to . UAV2 will loiter in  and at time  UAV1 takes over. 

Then a new identical cycle starts all over again. Therefore, the theorem is proved when 

. Next, we show that the theorem is true when . Assume that 

 or 

                                                        

First,  implies that condition  is violated and consequently we need more 

than two UAVs to ensure continuous coverage. We show that we need exactly  UAVs. 

With  UAVs we have the following (Gantt) chart: 
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UAV1: |▬▬▬▬|////////////////|----------|▬▬▬▬|////////////////|-----------|▬▬▬▬|---> time 
       0         T          T+∆         3T         4T         4T+Δ      6T          7T 

UAV2: |------------|▬▬▬▬|////////////////|----------|▬▬▬▬|////////////////|---------------> time 
       0         T          2T        2T+ ∆      4T          5T         5T+Δ  

UAV3: |------------|------------|▬▬▬▬|////////////////|----------|▬▬▬▬|/////////////////|-> time 
       0         T          2T         3T       3T+ ∆       5T         6T        6T+Δ 

Figure 8.  Cyclic Schedule with 3 UAVs 

Note that the scheduling cycles are , , …, and we have the following 

sequence of events: 

UAV1: Loiters from time  to time  and is operationally ready the earliest at time 

. 

UAV2: Loiters from time  to time  and is operationally ready the earliest at time 

. 

UAV3: Loiters from time  to time  and is operationally ready the earliest at time 

. 

     

When UAV3 completes its surveillance tour at time , either UAV2 or UAV1 takes 

over. Notice that UAV2 cannot take over without causing a coverage gap because it is not 

operationally ready at that time. In fact, UAV2 is operationally available the earliest at 

time and thus UAV2 can take over from UAV3 with no coverage gap if and only 

if 
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or 

 

However, we know that  from (2.4.2). As a result, UAV2 cannot ensure 

continuous coverage. It remains to check that UAV1 can take over the mission from 

UAV3 without a coverage interruption. The question is whether UAV1 is available at time 

 when UAV3 is done with its tour. In fact since UAV1 is available at time , it 

can take over successfully if and only if 

 

or 

 

But, this last inequality is part of (2.4.2) and thus UAV1 can take over successfully. Now 

assume that UAV1 takes over the mission and let it loiter in the time interval . 

Then, at time  when UAV1 is done with its tour we check which of UAV2 and UAV3 

can take over successfully. In fact UAV2 can take over since  is equivalent 

to . However, UAV3 cannot take over the surveillance from UAV1 because 

 being equivalent to  contradicts . Now let UAV2 take over 

and loiter in . A similar argument shows that only UAV3 can take over the 

mission successfully from UAV2 at time . Thus, let UAV3 loiter in . 

Similarly, at time , only UAV1 can take over the mission from UAV3 with no 

coverage gap. Then another identical cycle starts all over again at time  and thus the 

theorem is proved for 3. In fact, for 3 UAVs we have shown that we have a 

feasible UAV schedule (see Figure 9) with three UAVs. 
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Figure 9.  Cyclic Schedule of Size 3 

Next, we show the theorem is true for any . For that, we assume the theorem is 

true up to and prove that it is true for . Assume that 

                                           

Since , then  does not belong to any of the intervals  

 

and thus by the induction assumption the number of required UAVs must be larger than 

or equal to  to ensure continuous coverage. We show that exactly  UAVs are 

required. Note that the scheduling cycles are , , … and the following 

events take place: 

UAV1: Loiters from time 0 to time  and is operationally ready the earliest at time 

. 

UAV2 : Loiters from time  to time  and is operationally ready the earliest at time 

. 

UAV3 : Loiters from time  to time  and is operationally ready the earliest at time 

. 

UAV1

UAV3

UAV2
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UAVN-1 : Loiters from  to time  and is operationally ready the 

earliest at time .  

UAVN : Loiters from  to time  and is operationally ready the earliest at 

time .  

These are shown in Figure 10. 

UAV1:  |▬▬▬|///////////////////////////…/////////////|----|▬▬▬|---------------------------> time 
        0        T                             T+∆   

UAV2:  |---------|▬▬▬|//////////////…///////////////////////////|---|▬▬▬|-----------------> time 
        0        T       2T                                    

UAV3:  |---------|---------|▬▬▬|///…//////////////////////////////////////|---|▬▬▬|-------> time 
        0        T       2T      3T                              

                               

UAVN-1:  |---------|----------|---------|---...---▬|///////////////////////////////////////////////////----> time 
        0        T        2T      3T                         

UAVN:  |---------|----------|---------|---...------|▬▬▬|//////////////////////////////////////////---> time 
        0        T        2T      3T      (N-1)T     NT       

Figure 10.  Cyclic Schedule with N Identical UAVs 

UAVN completes its first loitering at time . We show that at least one UAV from the 

collection {UAV1, UAV2, … , UAVN-1} can take over the mission without causing a 

coverage gap. In fact, we show that UAV1 is the only UAV available to take over the 

surveillance from UAVN without causing a coverage interruption. First, UAV2 is 

operationally ready the earliest at time  and can take over with no coverage gap 

if and only if , or 
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But we know that  and, as a result, UAV2 cannot successfully take over 

the mission from UAVN. Next, we show that UAV3 cannot either. Indeed UAV3 is 

available the earliest at time  and therefore can take over with no coverage gap if 

and only if , or 

. 

But we know that  

 

and so UAV3 cannot take over successfully. We next prove that in general for

, UAVk cannot take over from UAVN without inducing a coverage gap. Indeed, 

UAVk is able to take over the mission successfully from UAVN if and only if 

 or 

 

But we have 

 

therefore, when , UAVk cannot take over the mission without incurring a 

coverage interruption. It remains to show that UAV1 can take over the mission with no 

coverage gap. In fact UAV1 is the only one that can do so. Indeed UAV1 is available the 

earliest at time  and can take over the mission if and only if , or 

. But, this last inequality is given in (2.4.3), and so UAV1 inherits the 

mission from UAVN with a successful handoff. Let UAV1 takes over successfully at time 

 and loiter from  to . At time  when UAV1 is done with its 
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tour, we show that only UAV2 can take over successfully the mission from UAV1. First, 

UAV2 is available at time  and can take over successfully if and only if 

, or , and thus UAV2 can do it. Next we claim that 

UAV3 cannot take over successfully from UAV1. Indeed UAV3 can take over with no gap 

if and only if , or . However, this last inequality does 

not hold and the claim for UAV3 is true. It follows that besides UAV2 none of the other 

UAVs are capable of taking over the mission from UAV1 without a coverage gap. Now 

when UAV2 successfully takes over the mission a similar argument shows that only 

UAV3 can successfully succeed UAV2. Repeating the same argument over several times 

shows that UAV1  UAV2  UAV3    UAVN and when UAVN  UAV1 

another identical cycle starts all over again. The proof of the theorem is now complete. 

 

2.4.2 Monotonicity Properties 

The next results show the number of UAVs needed to ensure continuous coverage 

depends monotonically on the UAV roundtrip and the loitering times.  

Corollary 2.4.2  With the loitering time T held constant, the number of UAVs needed for 

continuous coverage is an increasing function of the round trip . 

Proof.  We know from an earlier result that the optimal number of UAVs N satisfies                           

. The first inequality is equivalent to  while the 

second one is equivalent to . It follows by combining them that 

 . Clearly, the result follows since the function  is an increasing 
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function. In fact, it is the ratio  that determines the optimal number of UAVs 

ensuring continuous coverage. 

Corollary 2.4.3  With the roundtrip time held constant, the number of UAVs needed for 

continuous coverage is a decreasing function of the loitering time .  

Proof.  Similar to the proof above since  and the function  

 is decreasing. 

 

2.5 Conclusion 

In this chapter a simplified version of the UAV continuous coverage problem was studied 

and a formula for the optimal number of UAVs needed for continuous coverage was 

derived. The formula is based on the ratio of the roundtrip time to the loitering time of the 

UAV. This suggests that the ratio  can be used as a productivity metric of a UAV. 

The higher  is the better since it means the UAV is more productive by providing 

more loitering time with smaller support.  
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Chapter 3 

III.  THE MODEL FOR A NON-HOMOGENEOUS UAV FLEET 

 

3.1 Introduction 

The previous chapters studied the UAV continuous coverage problem with a 

homogeneous UAV fleet where all the UAVs had the same attribute vectors. This first 

approach has two advantages. First from a theoretical viewpoint it allowed us to derive a 

formula for the optimal cyclic schedule by just finding the minimum number of UAVs 

needed for continuous coverage since all of them are identical. It allows us to get basic 

insights and understanding of the problem that can serve as a stepping stone for the study 

of more complex problems. Secondly, from a practical viewpoint it may just happen, for 

maintenance purposes for example, that all available UAVs are of the same type in which 

case the model applies. A logical way of generalizing the previous model is to study the 

coverage problem assuming a non-homogenous UAV fleet. This approach is even more 

realistic because different UAVs offer unique features that can serve specific purposes. 

The USAF for example uses three types of UAVs; namely, the MQ-1 Predator, MQ-9 

Reaper, and RQ-4 Global Hawk. These three types of UAVs have their unique 

characteristics and performance capabilities. Though the MQ-9 Reaper is based on the 

MQ-1 Predator, they do not have the same performance abilities. MQ-9 reaper has a 

faster cruise speed than MQ-1 Predator and it has more offensive features since it was 

designed to offer a striking capability by carrying up to eight Hellfire missiles. Global 

Hawk, with RQ-4B being its most current version of the vehicle, is primarily designed for 
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ISR missions. It has no striking capabilities but its high altitude and long operational 

radius give it a great survivability and operational flexibility. These UAV will be 

described in more details in a chapter devoted to some numerical applications. This 

chapter studies the non-homogeneous model first with deterministic and then with 

stochastic UAV attributes. Deterministic linear programming and chance-constrained 

programming are used to formulate the continuous coverage problem.  

 

3.2 Model with Non-identical UAVs 

In the basic model it is shown that an interesting relationship exists between the UAV 

attribute vectors and coverage that is the loitering and roundtrip times are key variables to 

ensure the continuous coverage. We next proceed to establish similar results when the 

UAVs are not necessarily identical. This model is more complex and will turned out to be 

a difficult combinatorial optimization problem.   

 

3.2.1 Feasibility Condition with Non-identical UAVs 

The purpose of the next result is to understand when the simplest schedule, namely a 

schedule of size two, is feasible. The conditions that the attributes of these two UAVs 

must satisfy will be extended to larger schedules. In essence, the idea expressed in the 

next result will be used to characterize feasibility for more general schedules. We first 

consider a cyclic schedule of size 2. Let  and  be the attribute vectors of 
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these two UAVs. Define , , , and , 

for . 

Proposition 3.2.1  Two UAVs with attribute vectors and  form a 

feasible schedule if and only  and . That is  

where the vector ordering is taken in the traditional sense of componentwise comparison. 

Proof.  Consider the chart of Figure 11 which shows a size 2 schedule.  

UAV1 :   |▬▬▬▬▬▬|//////////////|------|▬▬▬▬▬▬|//////////////|--------------> time 
        S0=0           S1       S1+∆1     S2                S3          S3+∆1 

UAV2 :   |------------------|▬▬▬▬▬▬|//////////////|------|▬▬▬▬▬▬|-------->time 
        S0=0           S1               S2      S2+∆2    S3                    S4 

Figure 11.  Cyclic Schedule with Two Non-identical UAVs 

Note that the following sequence of events take place. UAV1 loiters from time  to  

and is available the earliest at time . Then UAV2 loiters from time  to  and 

is available the earliest at time . Evidently in the first cycle each UAVs can take 

over the mission with no coverage interruption from the previous UAV. When UAV2 is 

done loitering at time , we check whether UAV1 is available to take over the mission 

successfully from UAV2. UAV1 is operationally ready the earliest at time  and 

can take over the mission from UAV2 without inducing a coverage gap if and only if 

 

or 

 

This inequality simply translates the fact that after departing from the target area UAV1 

should be able to return to it before UAV2 is done with its loitering tour for otherwise a 
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coverage gap will be generated. Using symmetry we can immediately conclude that 

UAV2 takes over the mission at  from UAV1 with no coverage gap if and only if 

. However, we proceed to show that it is indeed the case. At time , let UAV1 

take over the mission assuming that . When UAV1 is done loitering at time 

 then UAV2 takes over at time  without no coverage gap if and only if 

it is operationally ready and available at ; which translates to 

 

where, once again  is when UAV2 is operationally ready and  is when 

UAV1 is done with its tour. It follows from the previous inequality that UAV2 is available 

to take over without coverage interruption if and only if . To summarize we have 

the following : When UAV2 is done, UAV1 can take over with no coverage gap if and 

only if  

 

and when UAV1 is done, UAV2 can take over with no gap if and only if 

 

Therefore, the two UAVs are the exact number of UAVs needed for continuous coverage 

if and only if  

 and  

or as claimed. 
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We next search for a necessary and sufficient condition which ensures that a UAV 

schedule of a higher size  is feasible. The case of a size 2 schedule was examined 

previously and we found it to be feasible if and only if  

  and  . 

We next consider 2 schedules of size 3 and 4 respectively and study their feasibility. An 

emerging pattern will help us formulate the feasibility conditions of a cyclic schedule and 

proceed to prove them in a formal way.  

Case 1 : Schedule with  UAVs. 

The Gantt chart for a cyclic schedule of size 3 is depicted in Figure 12. 

UAV 1: |▬▬▬▬▬▬|///////////////////////////////|----------|▬▬▬▬▬▬|/////////////////->  
      S0=0           S1                  S1+∆1      S3                    S4 

UAV 2: |------------------|▬▬▬▬▬▬|///////////////////////////////|-----------|▬▬▬▬▬->  
      S0=0           S1              S2                 S2+∆2         S4 

UAV 3: |------------------|------------------|▬▬▬▬▬▬|////////////////////////////|----------->  
      S0=0           S1             S2             S3                S3+∆3 

Figure 12.  Feasible Schedule with 3 UAVs 

From the previous chart we have the following sequence of events: 

UAV1: Loiters in , is done at , and is operationally ready the earliest at 

       . 

UAV2: Loiters in , is done at , and is operationally ready the earliest at 

       . 

UAV3: Loiters in , is done at , and is operationally ready the earliest at 

       . 
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Starting from the beginning of cycle 1 (i.e., ) we translate a series of successful 

handoffs. 

UAV3  UAV1 : UAV1 is operationally ready the earliest at time  and can take 

               over the mission with no gap if and only if  or  

               . 

UAV1  UAV2 : This can happen if and only if  or . 

UAV2  UAV3 : This can happen, if and only if  or 

                . 

       

Putting the previous results together gives the following: 

UAV3  UAV1   

UAV1  UAV2  

UAV2  UAV3  

A pattern seems to be emerging between the roundtrip of a UAV and the loitering times 

of the other UAVs. To confirm that we next investigate the feasibility of a schedule of 

size . 

Case 2 : Schedule with  UAVs. 
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We now consider a cyclic schedule of size  and search for conditions that ensure its 

feasibility. Using the same reasoning as in the previous case we arrive at the following 

statements: 

UAV4  UAV1    

UAV1  UAV2   

UAV2  UAV3   

UAV3  UAV4       

These are equivalent to: 

UAV4  UAV1    

UAV1  UAV2     

UAV2  UAV3   

UAV3  UAV4   

The four perfect handoffs of the schedule have been translated into four equivalent 

inequalities. A careful look at these inequalities confirms the pattern that has been 

observed earlier. Namely, feasibility is based on the principle that the roundtrip time of 

each UAV must be smaller than the aggregated loitering times of the other UAVs of the 

schedule.  

Consider a feasible schedule of size  denoted by . Define 

the scheduling cycles as follow. Let cycle  to be in the interval , cycle  in 

 and in general cycle  in , for . The principle that has 
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been observed earlier by studying the feasibility of cyclic schedules of sizes , , and  

is now formally stated and proved.  

Theorem 3.2.2  The cyclic schedule  is feasible if 

and only if 

 

Proof. The handoff times in cycle  are given by the set .  

Also in cycle , for each , UAVj is operationally available and mission ready 

at time j. Now in cycle , UAVj-1 is done with its surveillance tour at time   

. But UAVj in cycle  is operationally ready at time 

. Therefore, UAVj can take over with no coverage gap if and only if 

 

or 

   

 

The next result shows that although a cyclic schedule is defined as an ordered sequence 

of UAVs, it turns out that as far as feasibility is concerned the order of the UAVs in a 

cyclic schedule does not matter. That is mainly due to the fact that feasibility depends on 

the relationship between the roundtrip time of a UAV and the aggregated loitering times 

of the remaining UAVs. 
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Proposition 3.2.3  If a cyclic schedule , , …, ) with 

 is feasible, then any permutation of this schedule is also feasible. 

Proof.  Let ( , , …, )  be feasible; then  

 

Now consider a cyclic schedule ( , , …, ) where ( ,…, ) is a permutation 

of  Then 

 

Therefore, 

 

and thus ( , , …, ) is feasible. 

Proposition 3.2.3 can be very helpful when solving very large scale UAV coverage 

problems. More specifically, as will shown later, the UAV continuous coverage problem 

is a combinatorial optimization problem which is formulated as a zero-one integer 

program (25: Sec I.2 ; 26) and is known to be computationally NP hard (4:13, 34). 

Therefore to find good solutions for large problems one needs to resort to heuristics. The 

previous proposition can help in reducing the number of size  schedules to process 

during a heuristic search by a factor of  because all the permutations of a schedule 

correspond in fact to one schedule. 
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3.2.2 Characterization of Minimality 

A feasible cyclic schedule is graphically represented as a circuit where each node stands 

for a UAV and each arc for the mission handoff from a UAV to the immediate next 

successor. An arc here also means the handoff is successful because it does not incur a 

coverage gap. If a UAV can hand over the mission successfully to a UAV which is not an 

immediate successor then a feasible cyclic schedule of smaller size can be found and the 

original schedule cannot be optimal. This motivates us to introduce the “minimality” 

concept of a schedule.  

Definition 3.2.4  A feasible cyclic schedule  is minimal if no proper sub-schedule of 

 is feasible. 

 
Figure 13.  A Feasible but Not Minimal Schedule with 6 UAVs 

Therefore a feasible schedule is minimal if it does not contain a proper circuit. Figure 13 

shows a feasible cyclic schedule (UAV1, UAV2, UAV3, UAV4, UAV5, UAV6) which is 

not minimal because it contains the feasible cyclic schedule (UAV1, UAV2, UAV3, 

UAV6). Note also that a minimal cyclic schedule is not the same as a minimum cyclic 
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schedule because as minimum schedule is necessarily minimal but not the other way 

around.   

For the purpose of deriving the minimality conditions of an arbitrary feasible cycle we 

first investigate those conditions for a small schedule of size 6 of the form 

 where , . The conditions obtained for this 

schedule will be generalized to any feasible cyclic schedule. 

 
Figure 14.  A Minimal Feasible Cyclic Schedule 

In Figure 14, the feasibility of  is represented by the solid handoff arcs and the 

minimality of  is represented by the fact that the dotted handoff arcs should not take 

place. In the cyclic schedule  the UAVs need to loiter and relay each 

other in an orderly fashion as dictated by the cyclic schedule for them to ensure 

continuous coverage. We proceed to translate the handoff arcs in Figure 14 for each UAV. 

Each UAV gives rise to a set of inequalities. First, consider the handoff arcs which stem 

from UAV1. 

From the feasibility criterion seen earlier in order for UAV2 to have the capability to take 

over the mission successfully from UAV1 its roundtrip  must satisfy : 

UAV1

UAV5

UAV4

UAV3

UAV2UAV6
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UAV1  UAV2    . 

To ensure minimality UAV1 should not have the capability to bypass UAV2 and hand 

over the mission to UAV3 successfully. To clarify that consider the following chart.  

 
Figure 15.  Minimality Condition for UAV3 Roundtrip Time  

When UAV1 finishes its loitering time it is required that UAV3 should not be able to take 

over the mission form UAV1. In other words  should not hold 

and so the following inequality is needed for the minimality of the schedule.  

UAV1  UAV3    . 

The other minimality conditions which are based on the principle that a UAV should not 

be able to handover the mission to any other UAV but its immediate successor in the 

cyclic schedule are derived in a similar fashion. They are : 

UAV1  UAV4    . 

UAV1  UAV5    , 

UAV1  UAV6    . 

Using the same principle as before each of the remaining UAVs will generate a group of 

feasibility and minimality conditions as follows. 

T1 T1

T2 T2

T3 T3

T4 T4

T5 T5

T6 T6

UAV1

UAV2

UAV3

UAV4

UAV5

UAV6

Δ3

T4 +T5+T6+T1

Δ3
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 UAV2 

 UAV2  UAV3                                                                      
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 UAV6  UAV2     

 UAV6  UAV3     

 UAV6  UAV4      

 UAV6  UAV5     

From the above inequalities, the feasibility part gives: 

 

which is as given in Theorem 3.2.2 when . Next, we collect those inequalities 

involving the roundtrip durations to establish the conditions that ensure minimality of this 

schedule. 

       Inequality for    : , 

       Inequality for    : ,          

       Inequality for   : ,         

       Inequality for   :  ,         

       Inequality for   : ,          

       Inequality for   : .          

It follows that the round trip times need to satisfy the following inequalities for the cyclic 

schedule to be feasible and minimal.  
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It follows that, in general, in order to obtain the feasibility and minimality conditions of 

the cyclic schedule  we must have for each 

; 

 

and for , 

 

This result is stated next and proved formally. 

Theorem 3.2.5  Let , , …, ) be a cyclic schedule where  for  

 Define by  and . Then, A is 

feasible and minimal if and only if 

 

Before proving this result note that (3.2.1) is equivalent to the following two groups of 

inequalities: 

 

and 

 

It is easy to see that (3.2.2) is equivalent to  
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But these are just the feasibility inequalities that have been proved earlier. Note that 

inequalities (3.2.3) are equivalent to : 

 

or 

 

As separate the cases  and , they can be written as: 

 

and 

 

Therefore, for minimality we need to show the following inequalities : 

 

and 
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Proof of Theorem 3.2.6.  The feasibility was proved earlier. We focus on the 

minimality. Let us draw a picture which in fact is an extract from the Gantt chart of the 

UAV cyclic schedule of size n because it focuses on cycles  and  of the 

schedule. 

 
Figure 16.  Cycle k and k + 1 of The Schedule of Size n 

This picture shows that UAVj-1 is done loitering at time  and UAVj-1 is 

ready to pass on the mission to the next UAVj at that time. UAVj can make it to the target 

area to take over the mission from UAVj-1 because the schedule is feasible. The earliest 

time that UAVj is available to take over loitering is at time .. We know 

from feasibility that 

 

In order to ensure minimality we should make sure that UAVj does not have the 

capability to be available and mission ready before UAVj-1 does, for otherwise there is no 

Cycle k Cycle k+1

Tj-2 Tj-2

Tj-1

Tj Tj

UAVj-2

UAVj-1

UAVj

Tj-1

kSn+Sj-2 kSn+Sj-1 kSn+Sj (k+1)Sn+Sj-2 (k+1)Sn+Sj-1 (k+1)Sn+Sj

Case A

Case B

Δj

kSn+Sj+Δj kSn+Sj+Δj
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need to have UAVj-1 in the schedule. In Figure 16, we represented the time 

 for two possible cases denoted by (A) and (B). The time  is always less 

than or equal to  because of feasibility. Both cases (A) and (B) satisfy 

that ; to ensure minimality we basically avoid the occurance of the situation depicted in 

case (B). Namely, UAVj should not be available before time  for 

otherwise UAVj-1 would not be needed. Thus, we must have : 

 

 

 

or 

 

Indeed, if the above inequality holds in the opposite direction, that is if 

 

then, in cycle , UAVj-1 can be skipped by “switching” from UAVj-2 to UAVj and 

then the schedule will not be minimal. For the case , since UAV1 follows UAVn (i.e. 

UAVn preceeds UAV1) in the schedule we must have 

 

or 



47 

 

The proof is now complete.  

 

3.2.3 Handling Small Coverage Gaps 

So far the model we considered assumed that handoffs between UAVs are perfect in the 

sense that no coverage interruption takes place. In practice, however, it may be the case 

that a relatively small coverage gap may be acceptable because it is deemed not to affect 

the mission objective and requirements. This leads to us to introduce an extension of the 

previous model that takes into account the fact an ISR mission can tolerate a small 

coverage gap in a typical UAV handoff. The following charts shows a handoff between 

two UAVs with a coverage gap of length . 

 
Figure 17.  Coverage Gap of Length ε 

Consider a typical perfect handoff from UAVi to UAVj in a cyclic schedule. The handoff 

from UAVi to UAVj is perfect because . Next consider the situation where 

the mission can tolerate a small coverage gap of some length  This means that we 

now consider a handoff to be successful if . Note that  is the 

sense as  and therefore by defining  for all  we can switch 

UAVi

UAVj

T i T i

Δi

gap
ε

Δi

T j

Δj

T j

///////////////////////////////////////////

/////////////////////////////////////
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from UAVi to UAVj with a gap of maximum length  if and only if . From this 

observation, the original cyclic schedule  can be 

transformed into a new cyclic schedule which 

considers any positive gap in a handoff as a successful handoff and therefore we back to 

the early setting. Basically, the earlier definition of a perfect handoff is equivalent to a 

handoff with a coverage gap of length  (i.e., null coverage gap). In fact, when a 

schedule can tolerate a coverage gap of a most  it is same as adding a loitering 

capability of  time units to the UAVs. It follows that set of all cyclic schedules for 

which a coverage gap of at most  is admissible is much larger than the set of all 

schedules with perfect handoffs. Therefore an optimal cyclic schedule which tolerates a 

positive gap will have a smaller number of UAVs than an optimal schedule with perfect 

handoffs. This can be easily seen in the particular case of a homogeneous fleet by 

invoking the main theorem of the basic model. Since the optimal number of UAVs is 

basically determined by the ratio , it follows that implies that 

an optimal cyclic schedule will need a smaller number of UAVs when a coverage gap of 

maximum length  is acceptable. It follows from Theorem 3.4.3 that the new cyclic 

schedule  is feasible if and only if  

 

or 
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This shows that for the new cyclic schedule to be feasible each UAVj can be away from 

the target area for an additional period not exceeding .. 

 

3.3 Linear Programming Formulation 

In this section we use linear programming to find an optimal cyclic schedule that ensures 

continuous coverage of the target area. To formulate the UAV scheduling problem as a 

linear program we need to define the decision variables, objective function, and 

constraints (26). 

Recall that the fleet  is written as . First, we 

define the binary decision variables  according to whether UAVj is included in the 

cyclic schedule or not.  

 

Since the purpose is to find the minimum number of UAVs that provides continuous 

coverage the objective function of the linear program is simply the sum of the decision 

variables. Thus the objective function is :  

 

The feasible region of the continuous coverage linear program corresponds to the set of 

all feasible cyclic schedules. But the latter set is characterized by Theorem 3.2.2 the 

results of which translate exactly into the constraints of the linear program sought after. 

For convenience, let 
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 and  

Then using Theorem 3.2.2 the feasibility conditions of a UAV cyclic schedule are: 

 

Therefore, the optimal cyclic schedule is a solution to the following binary integer 

programming problem: 

 

 

 

 

Define the  square matrix  as follows. For each , and 

, let 

 

Next define 

, and , 

where the last row vector  has  components. 

Then the binary integer linear programming can be rewritten as: 
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Although we do not exploit the special structure of the matrix  it is worth mentioning 

that 

 

is a non-negative matrix. All entries of a column are the same except for the entry on the 

main diagonal which is null. Its determinant is  

 

Than can be seen as follows. First by using row permutations we can move the last row to 

the top to have  

 

Then using Gauss elimination we get 
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and the result follows. Since all of the loitering times  are positive 

numbers it follows that the determinant is not null and  is invertible.  

In this section the UAV continuous coverage problem is formulated as a binary integer 

linear program model with a minimizing objective function. It follows that for a large 

UAV fleet this model is a computationally NP hard problem because the zero-one integer 

linear programming problem is known to be NP hard (25: Sec I.1). Clearly, with a UAV 

fleet of a small size this model can be solved within a reasonable time by traditional 

techniques such as the branch and bound method, but as the UAV fleet size increases this 

branch and bound technique is not efficient enough to find an optimal solution because it 

might take a relatively long running time and may even fail to find an optimal solution. 

Thus, a heuristic algorithmic approach (e.g., Tabu search) may be needed to solve the 

model.  

 

3.4 Stochastic Model 

We now extend the UAV deterministic model to a stochastic model with non-identical 

UAVs. We assume that we have a non-homogeneous UAV fleet. In practice, loitering 

and roundtrip times are random because of weather conditions, enemy hostility, payload 

weight, etc., and imperfect handoffs may occur with a positive probability. As a result, 
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we assume that  and  are non-negative random variables. Coverage now becomes 

probabilistic and the constraints of the binary integer program derived earlier should 

reflect that by putting them in the form: 

 

For example we may be interested in finding the best UAV cycle schedule that provides 

continuous coverage  of the time by having a constraint of the form  

 

This leads in a natural way to formulate the stochastic version of the UAV continuous 

coverage problem as a chance-constrained programming problem (27: 23-27). This may 

be regarded as a “risk sensitive” formulation of the coverage constraints. For comparison 

purposes we may also formulate the coverage constraints using a “risk-neutral” approach 

by taking the expected value of the coverage constraints.  

 

3.4.1 Risk Neutral Model 

The constraints of the deterministic linear programming formulation for the UAV 

continuous coverage problem are 

 

The risk neutral approach consists in taking for each  the expected value 

on both sides of the above constraints. This means that on the average, the roundtrip of 

UAVi is smaller than the aggregated random loitering times of the other UAVs in the 
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cyclic schedule. The decision variables are always deterministic since they translate 

whether or not a UAV is included in the schedule. Taking the expected values on both 

sides of the previous constraints yields : 

 

or 

 

where . 

The risk neutral approach to the stochastic coverage problem is based on the idea of 

replacing each random variable by its mean. Therefore, when the distribution functions of 

the roundtrip and loitering times are known, the means are also known, and a 

deterministic model is easily obtained. The linear programming model that results 

through this process is :  
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The previous approach was based on the risk neutrality (indifference) of the decision 

maker by using the expected value metric. The mean value of a random variable is just a 

measure of location and does not say much about the spread of the values of the random 

variable around the mean and this can be unacceptable to the decision maker unless he is 

insensitive to risk. However, if the decision maker cares about risk he may choose an 

appropriate metric to control it. The next section introduces one approach to controlling 

the risk by imposing a lower bound on the continuous coverage probability.  

 

3.4.2 Risk Sensitive Model 

Another approach to handle the stochastic coverage problem is through chance-

constrained programming and the model obtained is this fashion is referred to the as the 

risk sensitive model. Now the parameters  and ,  are non-negative 

random variables and each coverage constraint takes the general form of  

 

More specifically, by using a threshold probability  we can express each 

coverage constraint as  

 

 

where  denotes a lower bound to the probability of satisfying the ith constraint. A 

special case worth mentioning is when the threshold probabilities  are all equal to 
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some common value . Note that the decision variable  is still binary and the 

objective function is also deterministic. The chance constrained programming for this 

UAV scheduling problem is: 

 

 

 

 

 

where the  and  parameters are non-negative random variables as mentioned earlier. 

Next, assume that the probability distribution function of each is normal and the 

parameters  are constant. Based on these assumptions we can convert this chance 

constrained programming model into a linear programming model by using properties of 

normal distributions.  

For each  let  be normally distributed with mean  and standard 

deviation . Then we have  

 

where  has the standard normal distribution. Using the CDF table of the 

standard normal distribution we define  to be the constant that satisfies: 
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where and  is a number between  and . Thus 

 

Because the goal is to convert the chance-constrained program model into a linear 

programming model we write the constraints as :  

 

Note that  should be smaller than  to satisfy the (3.4.1) and 

(3.4.2).  As a result, the constraints  

 

are equivalent to  

 

or 

 

Thus, the probability constraints are converted to linear constraints. Since the linear 

constraints are equivalent to the probabilistic constraints the previous chance constrained 

program is reduced to the following equivalent linear program: 
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3.5 Conclusion 

In this chapter we studied the UAV continuous coverage problem for a non-homogeneous 

UAV fleet. We formulated the UAV coverage problem as a zero-one integer linear 

program and introduced the notion of a minimal UAV schedule which can be used when 

solving large scale UAV continuous coverage models using heuristics. Finally the 

stochastic coverage problem was formulated as a chance-constrained problem that we 

converted to a zero-one integer linear program. Numerical examples will provided in the 

next chapter.  
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Chapter 4 

IV.  NUMERICAL APPLICATIONS 

 

4.1 Introduction 

In the previous chapters we established a modeling framework for the UAV continuous 

coverage problem and derived some theoretical as well as practical results. The ultimate 

goal of a model is the applicability of its insights and results to practical problems. A 

model is most useful when it can be applied to practical situations and has the potential to 

improve performance and add value to the current state of affairs. Because it is the first 

time that such a UAV scheduling modeling approach has been attempted practical 

applications with potential benefits to the war fighter may still need to wait until further 

results are established. A great deal of efforts were spent to find the right mathematical 

approach to the problem and as a consequence valuable applications may need have to 

wait until more realistic extensions of the model are added. Nevertheless in this chapter 

we attempt to provide some simple examples to illustrate the formulations of the UAV 

continuous coverage problem that we have established 

We speculate that the USAF has a classified process for scheduling UAVs to conduct ISR 

missions and we have no way of relating the present efforts to that. Knowing how the 

USAF does its scheduling for continuous coverage may lead to new ideas and possibly 

new directions for more operationally relevant research.  
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The next sections develop some simple numerical applications using the USAF UAVs 

that are currently in use in various part of the world. These include the MQ-1 Predator, 

MQ-9 Reaper, and RQ-4 Global Hawk (17:8,10). 

USAF describes the MQ-1 Predator UAV as a medium-altitude and long-endurance UAV 

system. It can serve in surveillance and reconnaissance roles and fire two Hellfire 

missiles, and the aircraft, in use since 1995, has seen combat over Afghanistan, Pakistan, 

Bosnia, Serbia, Iraq, and Yemen (28, 29). 

 
Figure 18.  MQ-1 Predator 

Table 1.  MQ-1 Predator General Characteristics 

  Empty Weight 512 kg   Maximum Speed 135 mph 
  Loaded Weight 1,020 kg   Cruise Speed 81-103 mph 
  Max Takeoff Weight 1,020 kg   Stall Speed 62 mph 
  Service Ceiling 25,000 ft   Range 2,000 nm 
  Endurance 24 hrs     

 

http://en.wikipedia.org/wiki/Reconnaissance�
http://en.wikipedia.org/wiki/AGM-114_Hellfire�
http://en.wikipedia.org/wiki/Missile�
http://en.wikipedia.org/wiki/Aircraft�
http://en.wikipedia.org/wiki/Combat�
http://en.wikipedia.org/wiki/War_in_Afghanistan_(2001%E2%80%93present)�
http://en.wikipedia.org/wiki/War_in_North-West_Pakistan�
http://en.wikipedia.org/wiki/NATO_intervention_in_Bosnia�
http://en.wikipedia.org/wiki/1999_NATO_bombing_of_Yugoslavia�
http://en.wikipedia.org/wiki/Iraq_War�
http://en.wikipedia.org/wiki/Yemen�
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MQ-9 Reaper is developed for use by the United States Air Force, the United States 

Navy, Italian Air Force, and the Royal Air Force. The MQ-9 is the first hunter-killer 

UAV designed for long-endurance, high-altitude surveillance (17:63; 24).  

Table 2.  MQ-9 Reaper General Characteristics 

  Empty Weight 2,223 kg   Maximum Speed 300 mph 
  Loaded Weight 4,760 kg   Cruise Speed 172-195 mph 
  Max Takeoff Weight 4,760 kg   Endurance 24 hrs 
  Service Ceiling 50,000 ft   Range 1,655 nm 

 

 
Figure 19.  MQ-9 Reaper 

RQ-4 Global Hawk is the fastest UAV flying today, it can provide a broad overview and 

systematically target surveillance shortfalls at long range with long loitering times over 

target areas. Also, it can survey as much as 40,000 square miles (100,000 square 

kilometers) of terrain a day (24, 25). 

http://en.wikipedia.org/wiki/United_States_Air_Force�
http://en.wikipedia.org/wiki/United_States_Navy�
http://en.wikipedia.org/wiki/United_States_Navy�
http://en.wikipedia.org/wiki/Aeronautica_Militare�
http://en.wikipedia.org/wiki/Royal_Air_Force�
http://en.wikipedia.org/wiki/Hunter-killer_armored-vehicle_team�
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Table 3.  RQ-4 Global Hawk General Characteristics 

  Empty Weight 3,851 kg   Maximum Speed 454 mph 
  Loaded Weight 10,387 kg   Cruise Speed 404 mph 
  Max Takeoff Weight 10,387 kg   Endurance 42 hrs 
  Service Ceiling 65,000 ft     

 

 
Figure 20.  RQ-4 Global Hawk 

In this chapter, we study UAV continuous coverage models using some UAV fleets 

which consist of these three kinds of UAVs. The previous results are used to find the 

optimal UAV number for each UAV fleet and target areas. Deterministic linear 

programming is used first and the stochastic model follows.  

 

4.2 Deterministic Modeling Applications 

The UAV fleet we consider in this section consists of 20 UAVs − 8 MQ-1 Predator’s, 8 

MQ-9 Reaper’s, and 4 RQ-4 Global Hawk’s. The target area is 1,100 miles away from 
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the operating base. Each UAV needs 5 hours for maintenance and refueling and their 

cruise speeds are obtained from the average of the cruise speed range. Based on these 

assumptions the loitering and roundtrip times can be calculated. The following table 

displays the results of the calculations. 

Table 4.  Roundtrip and Loitering Times (hours) : d = 1,100 Miles 

UAVs ξ1 ξ2 ξ3 Roundtrip time Loitering time 

MQ-1 Predator 12.0 12.0 5 28.9 0.087 

MQ-9 Reaper 6.0 6.0 5 17.0 12.0 

RQ-4 Global Hawk 2.7 2.7 5 10.4 36.6 
 
The values of  and  have been calculated based on the UAV speed and distance 

between the operating base and target area. Adding these two values to the maintenance 

and refueling time (  hours) gives the roundtrip of the UAV. The UAV loitering time is 

obtained by subtracting the back and forth trip durations from the UAV endurance time. 

In this model there are 20 binary integer decision variables. The matrix  is 

 

and the vectors  and  are: 
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Figure 21.  Deterministic model : K = 20, d = 1,100 miles 

The obtained linear program model can be easily solved using Microsoft Excel Solver. 

The optimal cyclic schedule consists of  RQ-4 Global Hawk’s.  

Next we assume that there are no RQ-4 Global Hawk UAVs because they have already 

been assigned to another mission and the resulting fleet consists only of 16 UAVs −  8 

MQ-1 Predator’s and 8 MQ-9 Reaper’s. With the target being 1,100 miles away, the 

optimal cyclic schedule is found to consist of three MQ-9 Reaper’s. The matrix A is 

 

The following figure obtained from MS Excel Solver summarizes the results.  

decision varables x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20
coefficients 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

solution 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
constraints vector b

1 0 0.087 0.087 0.087 0.087 0.087 0.087 0.087 11.978 11.978 11.978 11.978 11.978 11.978 11.978 11.978 36.554 36.554 36.554 36.554 73.109 28.913
2 0.087 0 0.087 0.087 0.087 0.087 0.087 0.087 11.978 11.978 11.978 11.978 11.978 11.978 11.978 11.978 36.554 36.554 36.554 36.554 73.109 28.913
3 0.087 0.087 0 0.087 0.087 0.087 0.087 0.087 11.978 11.978 11.978 11.978 11.978 11.978 11.978 11.978 36.554 36.554 36.554 36.554 73.109 28.913
4 0.087 0.087 0.087 0 0.087 0.087 0.087 0.087 11.978 11.978 11.978 11.978 11.978 11.978 11.978 11.978 36.554 36.554 36.554 36.554 73.109 28.913
5 0.087 0.087 0.087 0.087 0 0.087 0.087 0.087 11.978 11.978 11.978 11.978 11.978 11.978 11.978 11.978 36.554 36.554 36.554 36.554 73.109 28.913
6 0.087 0.087 0.087 0.087 0.087 0 0.087 0.087 11.978 11.978 11.978 11.978 11.978 11.978 11.978 11.978 36.554 36.554 36.554 36.554 73.109 28.913
7 0.087 0.087 0.087 0.087 0.087 0.087 0 0.087 11.978 11.978 11.978 11.978 11.978 11.978 11.978 11.978 36.554 36.554 36.554 36.554 73.109 28.913
8 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0 11.978 11.978 11.978 11.978 11.978 11.978 11.978 11.978 36.554 36.554 36.554 36.554 73.109 28.913
9 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0 11.978 11.978 11.978 11.978 11.978 11.978 11.978 36.554 36.554 36.554 36.554 73.109 17.022

10 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 11.978 0 11.978 11.978 11.978 11.978 11.978 11.978 36.554 36.554 36.554 36.554 73.109 17.022
11 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 11.978 11.978 0 11.978 11.978 11.978 11.978 11.978 36.554 36.554 36.554 36.554 73.109 17.022
12 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 11.978 11.978 11.978 0 11.978 11.978 11.978 11.978 36.554 36.554 36.554 36.554 73.109 17.022
13 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 11.978 11.978 11.978 11.978 0 11.978 11.978 11.978 36.554 36.554 36.554 36.554 73.109 17.022
14 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 11.978 11.978 11.978 11.978 11.978 0 11.978 11.978 36.554 36.554 36.554 36.554 73.109 17.022
15 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 11.978 11.978 11.978 11.978 11.978 11.978 0 11.978 36.554 36.554 36.554 36.554 73.109 17.022
16 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 11.978 11.978 11.978 11.978 11.978 11.978 11.978 0 36.554 36.554 36.554 36.554 73.109 17.022
17 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 11.978 11.978 11.978 11.978 11.978 11.978 11.978 11.978 0 36.554 36.554 36.554 36.554 10.446
18 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 11.978 11.978 11.978 11.978 11.978 11.978 11.978 11.978 36.554 0 36.554 36.554 36.554 10.446
19 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 11.978 11.978 11.978 11.978 11.978 11.978 11.978 11.978 36.554 36.554 0 36.554 73.109 10.446
20 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 11.978 11.978 11.978 11.978 11.978 11.978 11.978 11.978 36.554 36.554 36.554 0 73.109 10.446

Matrix A

Minimum Number of UAVs

2

MQ-1 Predator MQ-9 Reaper RQ-4 Global Hawk
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Figure 22.  Deterministic model: K = 16, d = 1,100 miles 

 

4.3 Stochastic Modeling Applications 

This section illustrates an application of the risk neutral and sensitive models to a 

different UAV fleet. Assume that the operating base has  available UAVs with 14 

MQ-1 Predator’s and  MQ-9 Reaper’s and that the target area is  miles away 

from the operating base. Next, assume that the MQ-1 roundtrip time is normally 

distributed with mean  hours and standard deviation  hours, and that the MQ-9 

roundtrip time is also normally distributed but with mean  hours and standard 

deviation  hours. The constant loitering times are  and  hours respectively. 

The following table summarizes the data. 

Table 5.  UAV Data (hours) : d = 1,000 Miles 

 
Loitering Time 

(Constant) 
Roundtrip Time (Normal Dist.) 

Average Standard Deviation 

MQ-1 Predator 2.3 26.8 2.2 

MQ-9 Reaper 13.1 15.9 1.9 
 

ecision varables x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16
coefficients 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

solution 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0
constraints vector b

1 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 11.978 11.978 11.978 11.978 11.978 11.978 11.978 11.978 35.934 28.913
2 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 11.978 11.978 11.978 11.978 11.978 11.978 11.978 11.978 35.934 28.913
3 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 11.978 11.978 11.978 11.978 11.978 11.978 11.978 11.978 35.934 28.913
4 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 11.978 11.978 11.978 11.978 11.978 11.978 11.978 11.978 35.934 28.913
5 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 11.978 11.978 11.978 11.978 11.978 11.978 11.978 11.978 35.934 28.913
6 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 11.978 11.978 11.978 11.978 11.978 11.978 11.978 11.978 35.934 28.913
7 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 11.978 11.978 11.978 11.978 11.978 11.978 11.978 11.978 35.934 28.913
8 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 11.978 11.978 11.978 11.978 11.978 11.978 11.978 11.978 35.934 28.913
9 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 11.978 11.978 11.978 11.978 11.978 11.978 11.978 11.978 35.934 17.022

10 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 11.978 11.978 11.978 11.978 11.978 11.978 11.978 11.978 35.934 17.022
11 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 11.978 11.978 11.978 11.978 11.978 11.978 11.978 11.978 35.934 17.022
12 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 11.978 11.978 11.978 11.978 11.978 11.978 11.978 11.978 35.934 17.022
13 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 11.978 11.978 11.978 11.978 11.978 11.978 11.978 11.978 35.934 17.022
14 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 11.978 11.978 11.978 11.978 11.978 11.978 11.978 11.978 35.934 17.022
15 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 11.978 11.978 11.978 11.978 11.978 11.978 11.978 11.978 35.934 17.022
16 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 11.978 11.978 11.978 11.978 11.978 11.978 11.978 11.978 35.934 17.022

Matrix A

Minimum Number of UAV

3

MQ-1 Predator MQ-9 Reaper
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First, let us apply the risk neutral model which closely resembles the deterministic one. 

The model, which has  decision variables, is   

 

 

 

 

The following figure, which is a screen shot from Microsoft Excel Solver, shows the 

matrix A and the vectors b and x.  

 
Figure 23.  Risk Neutral Model : K = 16, d = 1,000 miles 

Using Microsoft Excel Solver we find that the optimal schedule has 4 UAVs − 2 MQ-1 

Predator’s and  MQ-9 Reaper’s.  

Next, we illustrate the risk sensitive (chance-constrained) model with a numerical 

example. Here, the loitering time is a constant as given in Table 5 and the threshold 

decision varables x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16
coefficients 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

solution 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1
constraints vector b

1 0 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 13.071 13.071 30.664 26.739
2 2.261 0 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 13.071 13.071 30.664 26.739
3 2.261 2.261 0 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 13.071 13.071 30.664 26.739
4 2.261 2.261 2.261 0 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 13.071 13.071 30.664 26.739
5 2.261 2.261 2.261 2.261 0 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 13.071 13.071 30.664 26.739
6 2.261 2.261 2.261 2.261 2.261 0 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 13.071 13.071 30.664 26.739
7 2.261 2.261 2.261 2.261 2.261 2.261 0 2.261 2.261 2.261 2.261 2.261 2.261 2.261 13.071 13.071 30.664 26.739
8 2.261 2.261 2.261 2.261 2.261 2.261 2.261 0 2.261 2.261 2.261 2.261 2.261 2.261 13.071 13.071 30.664 26.739
9 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 0 2.261 2.261 2.261 2.261 2.261 13.071 13.071 28.403 26.739

10 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 0 2.261 2.261 2.261 2.261 13.071 13.071 28.403 26.739
11 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 0 2.261 2.261 2.261 13.071 13.071 30.664 26.739
12 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 0 2.261 2.261 13.071 13.071 30.664 26.739
13 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 0 2.261 13.071 13.071 30.664 26.739
14 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 0 13.071 13.071 30.664 26.739
15 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 0 13.071 17.593 15.929
16 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 13.071 0 17.593 15.929

Minimum Number of UAVs
4

Matrix A

MQ-1 Predator MQ-9 Reaper
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probability  is set to . It follows that  is  and the linear program 

obtained from the chance-constrained program is  

 

 

 

 

where the matrix  is the same as in the previous model because it depends only on the 

loitering but the vector  has changed as shown in the following screen shot obtained 

from MS Excel Solver.  

 
Figure 24.  Risk Sensitive Model : d = 1,000 miles, α = 0.95 

In this model the optimal solution consists of  UAVs − 3 MQ-1 Predator’s and 2 MQ-9 

Reaper’s. Moreover, as  increases the size of the optimal schedule also increases. For 

example, if  goes up to 0.99 then the size of the optimal schedule goes up to 6 

showing an increase of one MQ-1 Predator from the previous optimal solution. The 

decision varables x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16
coefficients 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

solution 0 0 0 1 0 0 0 0 0 0 1 1 0 0 1 1
constraints vector b

1 0 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 13.071 13.071 32.925 30.358
2 2.261 0 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 13.071 13.071 32.925 30.358
3 2.261 2.261 0 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 13.071 13.071 32.925 30.358
4 2.261 2.261 2.261 0 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 13.071 13.071 30.664 30.358
5 2.261 2.261 2.261 2.261 0 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 13.071 13.071 32.925 30.358
6 2.261 2.261 2.261 2.261 2.261 0 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 13.071 13.071 32.925 30.358
7 2.261 2.261 2.261 2.261 2.261 2.261 0 2.261 2.261 2.261 2.261 2.261 2.261 2.261 13.071 13.071 32.925 30.358
8 2.261 2.261 2.261 2.261 2.261 2.261 2.261 0 2.261 2.261 2.261 2.261 2.261 2.261 13.071 13.071 32.925 30.358
9 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 0 2.261 2.261 2.261 2.261 2.261 13.071 13.071 32.925 30.358

10 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 0 2.261 2.261 2.261 2.261 13.071 13.071 32.925 30.358
11 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 0 2.261 2.261 2.261 13.071 13.071 30.664 30.358
12 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 0 2.261 2.261 13.071 13.071 30.664 30.358
13 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 0 2.261 13.071 13.071 32.925 30.358
14 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 0 13.071 13.071 32.925 30.358
15 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 0 13.071 19.854 19.054
16 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 2.261 13.071 0 19.854 19.054

Minimum Number of UAVs
5

Matrix A

MQ-1 Predator MQ-9 Reaper
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following chart shows how the probability  affects the number of UAVs in the optimal 

scheduling solutions.  

 
Figure 25.  Optimal Number of UAVs vs. Threshold Coverage Probability 

This result shows that as the threshold probability  increases the optimal number of 

UAVs also increases. This is expected because the optimal number of UAVs should go 

up as we require a higher probability of providing continuous coverage. In other words, 

as we reduce the risk of violating the continuous coverage constraints the required 

number of UAVs should go up. The technical justification for that is simple and follows 

from the fact that the feasible region defined by  
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Next we show how the minimum number of UAVs varies as a function of the distance . 

Here for the risk sensitive model we let the threshold probability be . 

 
Figure 26.  Risk Neutral & Sensitive Models 

Figure 26 shows the optimal schedule size for both the risk sensitive and the risk neutral 

models as a function of the distance to the target area. Observe that the risk sensitive 

curve is on top of the risk neutral curve. That can be explained by the facts that 

 

implies the constraint 
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the feasible region of the risk neutral model contains that of the risk sensitive model, and 

both have the same minimizing objective function.  

Note that as the distance to the target area decreases the roundtrip time of a UAV also 

decreases and this implies that for both models the number of UAVs in an optimal 

schedule goes down. We know that the smallest and best optimal schedule is of size two 

because continuous coverage cannot be obtained with one UAV. As a result, as the 

roundtrip time becomes smaller and smaller both models will eventually exhibit an 

optimal schedule of size two. This explains why the curves in Figure 26 coincide for a 

while at the 2 UAV level.  

 

4.4 Conclusion 

The numerical examples discussed in this chapter are simple illustrations of the basic 

mathematical programming formulation of the continuous coverage problem. Real 

applications that can benefit the warfighter need to wait until more realistic and practical 

features of the coverage problem are introduced and studied. The main purpose of this 

study was to lay the ground for further investigations that may lead to meaningful 

applications. We believe that both the deterministic and stochastic versions have a high 

potential to lead to fruitful applications. However, the stochastic version will very likely 

need an advanced background in stochastic programming.  
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Chapter 5 

V. CONCLUSION 

 

5.1 Introduction 

This research provides an original approach to the continuous coverage problem by 

developing a new mathematical model to serve as a baseline model for further UAV 

scheduling studies. As a result, various extensions of the model are possible but we only 

mention a couple of them. 

 

5.2 Future Research Directions 

As the UAV fleet size increases the complexity of the problem increases and because of 

the special form of the objective function, there are generally a large number of optimal 

cyclic schedules of the same size. Therefore it would worthwhile to introduce a new 

metric that can differentiate these optimal schedules obtained earlier. One such metric is 

the slack time of a UAV within a cyclic schedule. Based on the definition of a slack time 

it is desirable that a UAV has a large slack time within a schedule to give it time to 

remedy any contingency that may arise before deployment to the target area. Therefore a 

cyclic schedule with large UAV slack times is more efficient. A metric that could 

measure the value of a schedule is its total UAV slack time. This metric can be used to 

formulate a new objective function for the zero-one integer program. Weight or priority 

coefficients may also be introduced to refine the objective function.  

Another possible extension is to use an aerial tanker to refuel the UAVs. The tanker will 
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be closer to the target area than to the operating base for this option to make sense. The 

UAVs will fly for a shorter time to refuel and their productivity will increase by using the 

extra time gained to provide more loitering time. It follows that a UAV will be 

commuting between the target area and the tanker but once in a while the UAV needs to 

return to the operating base for maintenance to keep its performance up. In this case, a 

UAV will have 2 roundtrip variables involving the tanker and the operating base. In this 

approach the safety of the tanker becomes a major concern. The distance between the 

tanker and the target area is critical and needs to be evaluated carefully. The tanker may 

also be supporting several missions and the location of the tanker is another variable 

needing careful analysis. Taking into account the risks and rewards the critical location of 

the tanker can be determined. The rewards being that a smaller number of UAVs will be 

needed. A risk analysis needs to be done.  

 

5.3 Conclusion 

This thesis has introduced a new class of cyclic scheduling problems with a prototype 

being the UAV continuous coverage problem. A mathematical framework was initiated 

to serve as a stepping stone to further the study of this class of problems. Various 

theoretical as well as practical results were derived and used to formulate the basic 

problem as a mathematical programming problem. The next step is to build on and 

extend this framework by adding more features to handle more complex problems of the 

same kind.  
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Appendix A. Blue Dart 

UAV Continuous Coverage Pays Off! 

USA today, June 15, 2009 wrote “Lt. Gen. David Deptula, Air Force Deputy chief of staff 

for intelligence, surveillances and reconnaissance missions, said intelligence gathering is 

key to counterinsurgency operations. An example, he said in an interview, was the 

tracking and killing in 2006 of Abu Musab al-Zarqawi, the leader of al-Qaeda in Iraq. It 

took 600 hours of surveillance by a Predator drone to track Zarqawi and a matter of 

minutes for an F-16 to drop the bombs that killed him”.  This excerpt stresses the 

importance of UAVs in supporting the warfighter… A redoubtable enemy has been 

eliminated.  How did the UAVs do it?  How did they provide continuous coverage of 

the target?  How many UAVs were there?  One, two, three …?  How do you find the 

right number?  How were they scheduled?  

The UAVs performed 600 hours of continuous coverage to eliminate a redoubtable 

enemy!  Continuous coverage was the key to the operation success! Recently we 

developed a mathematical model to optimize the process of choosing the best UAV 

cyclic schedule to provide continuous coverage of a target area.   

The problem to be solved can be easily understood.  A critical ISR mission requiring 

continuous surveillance and coverage of a target area is to be accomplished using UAVs 

as the main resource.  A UAV fleet is available at the operating base to support the 

mission.  The UAV being a valuable and scare resource is to be frugally used 

particularly when there are other ISR missions around the world requiring UAVs. The 

main questions to answer are how to sequence the UAVs to conduct the mission to 
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provide continuous coverage of the target area and how many UAVs are required 

knowing that one should not use more UAVs than needed. Continuous coverage is a key 

requirement.  Ideally, if possible, there should not be coverage gaps at all since that may 

render the mission worthless; for example, objects of interest may move out of the target 

area without them being detected. There could be several unforeseen events that could 

prevent continuous coverage and if it is the case then one needs to obtain the maximum 

coverage possible.  

A new mathematical framework was needed to solve the problem.  We developed the 

framework from scratch since no previous work was done on such a problem.  It will 

serve as a baseline model for more complex UAV scheduling problems. We introduced 

the notion of a UAV cyclic schedule and in the case of a homogeneous UAV fleet we 

derive a formula for the minimum of UAVs needed to ensure continuous coverage.  For 

a non-homogeneous UAV fleet we formulate the problem as a binary integer program 

and solved it.  We built an Excel tool based on the findings. Taking a fleet of MQ-1’s, 

MQ-9’s and Global Hawk’s we used the tool to come up with the optimal UAV cyclic 

schedule that provides continuous coverage.   

Several key insights were obtained. The model provides valuable information on the 

parameters driving the UAV performance coverage. Loitering and transit times are the 

most impacting parameters driving the performance coverage of the UAVs and the 

needed number of UAVs goes up as the transit time goes up. Also, the number of needed 

UAVs goes down as the loitering time goes up.  A new UAV productivity metric is 

introduced as the ratio of the loitering to the transit time. As this ratio goes up a smaller 
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number of UAVs are required to provide continuous coverage because they are more 

productive. The results obtained can be applied to other surveillance problems and 

particularly those pertinent to NRO and NSA. 

The developed mathematical model can be used to solve other problems sharing the same 

structure as the UAV continuous coverage problem.  The model that we developed can 

be applied to other situations where a task is to be processed continuously without 

interruptions and the “agents” providing the resources to perform the task are scheduled 

cyclically. Each agent carries out a portion of the task before handing it over to the next 

one. Here the agent is limited in its capability to work for a long time without interruption 

because it needs resources to sustain itself while working and so needs to break away 

from the task while another agent takes over. Only one agent can work on the task at a 

time. Search and rescue missions where continuous coverage may be crucial to find 

survivors, aerial tankers needing to orbit while waiting to refuel aircraft, satellite orbiting 

to provide a continuous flow of information may be modeled using the obtained results.  

UAV continuous coverage of a target is crucial for the success of a critical ISR mission. 

Finding the minimum number of UAVs required and an optimal cyclic schedule to ensure 

continuous coverage will enhance the asymmetric warfare capabilities of the Air Force. 
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Appendix B. Poster Chart 
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Appendix C. Excel Model User Guide 

The software implementation is in the form of a Microsoftr Office Excelr spread-sheet 

Microsoftr Corporation (2006). First we calculate the loitering and roundtrip times using 

the endurance-time and distance to the target data and then we build the linear 

programming model to be solved using Excelr Solver.  

 

Step 1. Data Setting 

The loitering and roundtrip times are calculated using the UAV endurance time, cruise 

speed, and distance data.  

 
Figure 27.  Basic Data Setting Spread Sheet 

 

Step 2. Linear Programming Model Setting 

Using the data calculated from step 1 we build the linear program model to solve using 

Excelr Solver.  

 

 

endurance speed
MQ-1 24 92 mile/h 5 hours
MQ-9 24 183 mile/h 1100 mile 1770.3 km
RQ-4 42 404 mile/h

ξ1 ξ2 ξ3 Δ T
MQ-1 11.957 11.957 5 28.913 0.087
MQ-9 6.011 6.011 5 17.022 11.978
RQ-4 2.723 2.723 5 10.446 36.554

Distance to Target Area
Refueling and Maintenance time

= Sumproduct(B3:U3, B4:U4) 
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Figure 28.  Screen Shot of Excel Spread-sheet 

Decision variables : A binary variable indicates whether or not a UAV is a part of cyclic 

                 schedule.  

Coefficients : Each decision variable has a coefficient  in the objective function.  

Solution : Optimal solution vector  

Matrix A : Entries of A are all UAV loitering times with the main diagonal entries being  

         zero.  

Vector b : Each entry of b is a UAV roundtrip. 

 

Step 3. Add-in Excelr Solver  

1. Click the Microsoft Office Button , and then click Excel Options.  

2. Click Add-Ins, and then in the Manage box, select Excel Add-ins.  

A B C D E F G H I J K L M N O P Q R S T U V W
1
2 decision varables x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20
3 coefficients 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4 solution 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
5 constraints vector b
6 1 0 0.087 0.087 0.087 0.087 0.087 0.087 0.087 11.978 11.978 11.978 11.978 11.978 11.978 11.978 11.978 36.554 36.554 36.554 36.554 73.109 28.913

7 2 0.087 0 0.087 0.087 0.087 0.087 0.087 0.087 11.978 11.978 11.978 11.978 11.978 11.978 11.978 11.978 36.554 36.554 36.554 36.554 73.109 28.913

8 3 0.087 0.087 0 0.087 0.087 0.087 0.087 0.087 11.978 11.978 11.978 11.978 11.978 11.978 11.978 11.978 36.554 36.554 36.554 36.554 73.109 28.913

9 4 0.087 0.087 0.087 0 0.087 0.087 0.087 0.087 11.978 11.978 11.978 11.978 11.978 11.978 11.978 11.978 36.554 36.554 36.554 36.554 73.109 28.913

10 5 0.087 0.087 0.087 0.087 0 0.087 0.087 0.087 11.978 11.978 11.978 11.978 11.978 11.978 11.978 11.978 36.554 36.554 36.554 36.554 73.109 28.913

11 6 0.087 0.087 0.087 0.087 0.087 0 0.087 0.087 11.978 11.978 11.978 11.978 11.978 11.978 11.978 11.978 36.554 36.554 36.554 36.554 73.109 28.913

12 7 0.087 0.087 0.087 0.087 0.087 0.087 0 0.087 11.978 11.978 11.978 11.978 11.978 11.978 11.978 11.978 36.554 36.554 36.554 36.554 73.109 28.913

13 8 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0 11.978 11.978 11.978 11.978 11.978 11.978 11.978 11.978 36.554 36.554 36.554 36.554 73.109 28.913

14 9 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0 11.978 11.978 11.978 11.978 11.978 11.978 11.978 36.554 36.554 36.554 36.554 73.109 17.022

15 10 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 11.978 0 11.978 11.978 11.978 11.978 11.978 11.978 36.554 36.554 36.554 36.554 73.109 17.022

16 11 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 11.978 11.978 0 11.978 11.978 11.978 11.978 11.978 36.554 36.554 36.554 36.554 73.109 17.022

17 12 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 11.978 11.978 11.978 0 11.978 11.978 11.978 11.978 36.554 36.554 36.554 36.554 73.109 17.022

18 13 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 11.978 11.978 11.978 11.978 0 11.978 11.978 11.978 36.554 36.554 36.554 36.554 73.109 17.022

19 14 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 11.978 11.978 11.978 11.978 11.978 0 11.978 11.978 36.554 36.554 36.554 36.554 73.109 17.022

20 15 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 11.978 11.978 11.978 11.978 11.978 11.978 0 11.978 36.554 36.554 36.554 36.554 73.109 17.022

21 16 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 11.978 11.978 11.978 11.978 11.978 11.978 11.978 0 36.554 36.554 36.554 36.554 73.109 17.022

22 17 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 11.978 11.978 11.978 11.978 11.978 11.978 11.978 11.978 0 36.554 36.554 36.554 36.554 10.446

23 18 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 11.978 11.978 11.978 11.978 11.978 11.978 11.978 11.978 36.554 0 36.554 36.554 36.554 10.446

24 19 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 11.978 11.978 11.978 11.978 11.978 11.978 11.978 11.978 36.554 36.554 0 36.554 73.109 10.446

25 20 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 11.978 11.978 11.978 11.978 11.978 11.978 11.978 11.978 36.554 36.554 36.554 0 73.109 10.446

Minimum Number of UAVs

2

Matrix A

MQ-1 Predator MQ-9 Reaper RQ-4 Global Hawk

= Sumproduct($B$3:$U$3, B25:U25) 
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3. Click Go.  

4. In the Add-Ins available box, select the Solver Add-in check box, and then 

click OK.  

5. After you load the Solver Add-in, the Solver command is available in the 

Analysis group on the Data tab.  

 

Step 3. Formulating Linear Program 

 

 

 

 

Figure 29.  Solver Parameters 

  

= Sumproduct($B$3:$U$3, B25:U25) 
Decision Variables (20) 

Decision Variables are binary integer 

Constraints are set correctly.  



80 

Bibliography 

1. Unmanned Aircraft Systems Roadmap 2005-2030, Memorandum for Secretaries of 

the Military Departments, August 2005. 

2. Kenneth Israel and Robert Nesbit, Defense Science Board Study on Unmanned Aerial 

Vehicles and Uninhabited Combat Aerial Vehicles, Office of the Under Secretary of 

Defense for Acquisition, technology, and Logistics, Washington D.C., February 2004 

3. http://www.usatoday.com/news/military/2009-06-16-drones_N.htm, USA Today, 

June 15, 2009 

4. Garey, M., and Johnson, D., 1979, Computers and Intractability : A Guide to the 

Theory of NP-Completeness, Freeman Co., San Francisco. 

5. UAV Cooperative decision and Control: Challenges and Practical. Ed. by Tal Shima 

and Steven Rasmussen, SIAM Advances in Design and Control No. 18, 2009. 

6. Randy Flood, A Java Based Human Computer Interface for a UAV decision Support 

Tool Using Conformal Mapping, MS Thesis, Air force Institute of Technology, 1999. 

7. Dustin Nowak, Exploitation of Self Organization in UAV Swarms for Optimization in 

combat Environments, MS Thesis, Air force Institute of Technology, 1999. 

8. Joshua Corner, Swarming reconnaissance Using Unmanned Air Vehicles in a 

Parallel Discrete Event Simulation, MS Thesis, Air force Institute of Technology, 

2004. 

9. Jennifer Walston, Unmanned Aerial Vehicle Mission Level Simulation, MS Thesis, 

Air Force Institute of Technology, 1999. 



81 

10. Paul G. Fahlstrom and Thomas J. Gleason, Introduction to UAV systems, UAV 

Systems Inc., Columbia, MD, 1992. 

11. Stephen P. Howard, Special Operations Forces and Unmanned Aerial Vehicles, MS 

Thesis, School of Advanced Airpower studies, Air University Press, Maxwell Air 

force Base, Alabama. 

12. Jeffrey N. Renehan, Unmanned Aerial Vehicles and weapons of mass destruction : A 

lethal combination?, MS Thesis, School of Advanced Airpower studies, Air 

University Press, Maxwell Air force Base, Alabama. 

13. Dana A. Longino, Role of unmanned Aerial Vehicles in Future Armed conflict 

Scenarios, Research report No. AU-ARI-92-12, Air University Press, Maxwell Air 

force Base, Alabama. 

14. Michael Kennedy, A Moderate course for USAF UAV Development, MS Thesis, Air 

University, Air Command Staff College, Maxwell Air Force Base, Alabama, April 

1998.   

15. Jeffery Stephenson, The Air Refueling Receiver that Does not Complain, School of 

Advanced Airpower Studies, Maxwell Air Force Base, Alabama, October 1999. 

16. Intelligence, Surveillance, and reconnaissance Operations, Air Force Doctrine 

Document 2-9, approved by T. Michael Mosely, General USAF Chief of Staff, 

United States Air Force, July 2007. 

17. Unmanned Aircraft Systems Roadmap 2009-2034, Memorandum for Secretaries of 

the Military Departments, April 2009. 



82 

18. Michael Pinedo, Scheduling, Theory, Algorithm and System, 2nd Edition, Prentice 

Hall 2002 

19. S. Grave, H Meal, D. Stefek, A.Zenghmi, Scheduling of re-entrant flow shops, 

Journal of Operations Management, Vol. 3, No. 4, August 1983, pp. 197-207 

20. H. Zhang and S. Graves, Cyclic scheduling in a Stochastic Environment,  

Operations Research, Vol. 45, No. 6, 1997, pp. 894-903 

21. R. Bowman and J. Muckstadt, Stochastic analysis of Cyclic Schedules, Operations 

Research, Vol. 41, No. 5, 1993, pp. 947-958 

22. K. Baker, Introduction to sequencing and scheduling, John Wiley, 1974 

23. R. Conway, W. Maxwell, and L. Miller, Theory of Scheduling, Dover Publications, 

New York, 1967 

24. http://en.wikipedia.org/wiki/MQ-9_Reaper 

25. G. Nemhauser & L. Wolsey, Integer and Combinatorial Optimization, John Wiley, 

1999 

26. L. Wolsey. Integer Programming, John Wiley, 1998 

27. Frederick S. Hillier, Gerald J. Lieberman, Introduction to Operations Research, 8th 

Edition, McGraw-Hill Inc., 2004, pp.23-27 

28. http://www.airforce-technology.com/projects/predator 

29. http://en.wikipedia.org/wiki/MQ-1_Predator 

30. http://en.wikipedia.org/wiki/RQ-4_Global_Hawk 



83 

31. http://www.globalaircraft.org/planes/rq-4_global_hawk.pl 



 

REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 074-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and 
maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other aspect of the collection of information, including 
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, 
Suite 1204, Arlington, VA  22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty for failing to comply with a collection of 
information if it does not display a currently valid OMB control number.   
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY) 

21-03-2010 
2. REPORT TYPE  

Master’s Thesis 
3. DATES COVERED (From – To) 

Mar 2009 – Mar 2010 
4.  TITLE AND SUBTITLE 

 
THE UAV CONTINUOUS COVERAGE PROBLEM 
 

5a.  CONTRACT NUMBER 

5b.  GRANT NUMBER 
 

5c.  PROGRAM ELEMENT NUMBER 

6.  AUTHOR(S) 
 
Taegyun Ha, Captain, Republic of Korea Army 
 

5d.  PROJECT NUMBER 
 
5e.  TASK NUMBER 

5f.  WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S) 
  Air Force Institute of Technology 
 Graduate School of Engineering and Management (AFIT/EN) 
 2950 Hobson Street, Building 642 
 WPAFB OH 45433-7765 
 

8. PERFORMING ORGANIZATION 
    REPORT NUMBER 
 
AFIT-OR-MS-ENS-10-03 

9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
  

INTENTIONNALY LEFT BLANK 

10. SPONSOR/MONITOR’S ACRONYM(S) 
 

11.  SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
              APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 
 
13. SUPPLEMENTARY NOTES  
 
 
14. ABSTRACT : The purpose of this research is to develop a method to find an optimal UAV cyclic schedule to provide maximum coverage over a target area to 
support an ISR mission. The goal is to reach continuous coverage. UAV continuous coverage of a target area is crucial for the success of an ISR mission. Even the 
smallest coverage gap may jeopardize the success of the mission. Ideally it is desirable to obtain continuous coverage of a target area but the stochastic nature of the 
problem makes continuous coverage without gaps unlikely. However, it is still possible to obtain a high coverage rate. Coverage gaps may occur at handoff from one 
UAV to another. We first study a deterministic model with identical UAVs and derive the minimum number of required UAVs to ensure continuous coverage. 
Continuous coverage is possible only in the deterministic setting. The model provides valuable insights on the parameters driving the UAV performance coverage. It is 
shown that the loitering and the roundtrip times are the most impacting parameters driving the performance coverage of the UAVs. It is proved that the number of 
UAVs is an increasing function of the roundtrip time and a decreasing function of the loitering time. The results obtained for the model with identical UAVs are then 
extended to the deterministic model with possibly non-identical UAVs. Conditions for continuous coverage are derived and used to formulate the continuous coverage 
problem as an integer linear program. When the UAV data is stochastic the problem is formulated as a chance constrained program and converted under suitable 
conditions to a deterministic integer linear program. Some numerical applications and extensions of the models are discussed. 
15. SUBJECT TERMS 
UAV, Cyclic scheduling, Continuous coverage, Loitering, Roundtrip, Deterministic Model, Stochastic Model, Linear Program, Stochastic 
Program, Chance-Constrained Program 
16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF  

     ABSTRACT 
 
 

UU 

18. NUMBER  
      OF 
      PAGES 
 

97 

19a.  NAME OF RESPONSIBLE PERSON 
Joshep Kebir, PhD, (ENS) 

a. REPORT 
 

U 

b. ABSTRACT 
 

U 

c. THIS PAGE 
 

U 

19b.  TELEPHONE NUMBER (Include area code) 
(937) 785-3636, ext 4319; e-mail:Youcef.Kebir@afit.edu   

   Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std. Z39-18 


	Abstract
	Dedication
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	INTRODUCTION
	Setting
	Problem Statement
	Objective
	Scope
	Overview

	THE MODEL FOR A HOMOGENEOUS UAV FLEET
	Introduction
	Preliminaries and Basic Definitions
	The Basic Model
	Results
	Main Result
	Monotonicity Properties

	Conclusion

	THE MODEL FOR A NON-HOMOGENEOUS UAV FLEET
	Introduction
	Model with Non-identical UAVs
	Feasibility Condition with Non-identical UAVs
	Characterization of Minimality
	Handling Small Coverage Gaps

	Linear Programming Formulation
	Stochastic Model
	Risk Neutral Model
	Risk Sensitive Model

	Conclusion

	NUMERICAL APPLICATIONS
	Introduction
	Deterministic Modeling Applications
	Stochastic Modeling Applications

	Conclusion

	CONCLUSION
	Introduction
	Future Research Directions
	Conclusion

	Appendix A. Blue Dart
	Appendix B. Poster Chart
	Appendix C. Excel Model User Guide
	Bibliography



